Quantum Computing Boehringer Ingelheim Collaborates with Google for Pharma R&D

Editor: Ahlam Rais

Under the terms of the partnership, Boehringer Ingelheim will make use of its expertise in the field of computer-aided drug design and in silico modeling with Google’s outstanding resources. The pharmaceutical company is the first in its industry to team up with Google in quantum computing.

Related Vendors

Together, Boehringer and Google will be exploring the various potentials of quantum computing for pharma R&D.
Together, Boehringer and Google will be exploring the various potentials of quantum computing for pharma R&D.
(Source: Google)

Ingelheim/Germany – Boehringer Ingelheim has recently announced a collaborative agreement with Google Quantum AI (Google), focusing on researching and implementing cutting-edge use cases for quantum computing in pharmaceutical research and development (R&D), specifically including molecular dynamics simulations. The new partnership combines Boehringer Ingelheim’s leading expertise in the field of computer-aided drug design and in silico modeling with Google’s outstanding resources as one of the leading developers of quantum computers and algorithms. Boehringer Ingelheim is the first pharmaceutical company worldwide to join forces with Google in quantum computing. The partnership is designed for three years and is co-led by the newly established Quantum Lab of Boehringer Ingelheim.

“We are really excited about joining forces with Google, the leading tech company when it comes to quantum computing,” says Michael Schmelmer, Member of the Board of Managing Directors of Boehringer Ingelheim with responsibility for Finance and Corporate Functions. “Quantum computing has the potential to significantly accelerate and enhance R&D processes in our industry. Quantum computing is still very much an emerging technology. However, we are convinced that this technology could help us to provide even more humans and animals with innovative and groundbreaking medicines in the future.”

The new collaboration is part of Boehringer Ingelheim’s comprehensive digital transformation strategy with the aim to better leverage and accelerate the company’s promising pipeline and ultimately bringing more medical breakthroughs to patients in need. Boehringer Ingelheim is significantly increasing its investment in a broad range of digital technologies, encompassing key areas such as Artificial Intelligence (AI), machine learning, and data science to better understand diseases, their drivers and biomarkers, and digital therapeutics.

“Extremely accurate modelling of molecular systems is widely anticipated as among the most natural and potentially transformative applications of quantum computing. Therefore, Google is excited to partner with Boehringer Ingelheim to explore use cases and methods for quantum simulations of chemistry. Boehringer Ingelheim brings both an impressive quantum computing team and deep expertise in real world applications of these capabilities in the pharmaceuticals space,” says Ryan Babbush, Head of Quantum Algorithms at Google.

China’s Pharmaceutical Equipment Market - Current Status, Trends and Recommendations for Action

As China is emerging as one of the world’s fastest-growing markets for the consumption of pharmaceuticals, it also offers huge opportunities for the global equipment industry.

This 40-page report aims to help you gain a better understanding of the current China's pharmaceutical market regarding a series of pharmaceutical industry related policies. Based on results of the survey among users in the pharmaceutical industry and the expert interviews, it will also provide you with a forecast for the industry and recommendations for your future operating and investment in China.

Computational approaches are already a cornerstone in the design and development of innovative new medicines, making a significant contribution to improving the health of humans and animals. However, given their algorithm structure, today's computers are not able to solve many of the real complex challenges which are essential for the early stages of pharmaceutical R&D, most importantly simulating and analyzing molecules related to disease mechanisms. Quantum computing has the potential to accurately simulate and compare much larger molecules than currently possible, creating new opportunities for pharmaceutical innovation and therapies for a range of diseases.“

Researching and developing new, groundbreaking therapies for diseases with high unmet medical need is what our work at Boehringer Ingelheim is all about,” says Michel Pairet, Member of the Board of Managing Directors of Boehringer Ingelheim with responsibility for the company’s Innovation Unit. “Together with Google, our goal is to apply the use of quantum computing in biopharmaceutical R&D and thus continue to make a decisive contribution to medical progress for patients around the world.”

“The thought leadership of Boehringer Ingelheim's quantum research effort is very impressive. This is reflected in the quick turnaround time that their strong quantum research team got assembled, and their commitment to open research. We are looking forward to jointly working on the field with fundamental research and a joint vision for solving relevant pharma problems in the beyond-classical regime over the next decade,” says Markus Hoffmann, Google Quantum AI Partnerships.

Boehringer Ingelheim will invest significantly in the coming years to realize the full potential of quantum computing. The company has already set up a dedicated Quantum Lab and hired outstanding experts in the field of quantum computing from academia, industry, and quantum providers. Partnerships from Industry and Academia will complement the respective teams. Colleagues mainly from the Boehringer Ingelheim’s Innovation Unit and IT support these experts in their work.

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy.

Unfold for details of your consent

(ID:47062507)