German China India

Germany: CO2 Usage

Successful Transformation of CO2 into Methionine

| Editor: Alexander Stark

Just like mineral fertilizers accelerate the growth of plants, methionine improves the growth of lifestock such as poultry or fish.
Just like mineral fertilizers accelerate the growth of plants, methionine improves the growth of lifestock such as poultry or fish. (Source: Pixabay / CC0)

Methionine is used as an essential amino acid, particularly in animal feed, that is currently based on petrochemical production. A newly developed enzymatic process has succeeded for the first time in using gaseous CO2 as a basic material for the production of a chemical mass product in a biotechnical reaction.

Munich/Germany — Methionine is an amino acid, i.e. a basic building block of proteins, which is essential for many organisms, particularly humans, but cannot be produced by them. This amino acid must therefore be ingested with food. Just like mineral fertilizers accelerate the growth of plants, methionine improves the growth of lifestock such as poultry or fish. The current global production of methionine is approximately one million tons per annum.

The industrial production of methionine from petrochemical source materials is currently done via a six-step chemical process that requires highly toxic hydrogen cyanide, among other substrates. In 2013, Evonik Industries, one of the world's largest manufacturers of methionine, invited university researchers to propose new processes for making the substance safer to produce. Methional, which occurs in nature as a degradation product of methionine, is formed as a facile intermediate during the conventional process.

Based on the idea that methionine in microorganisms is degraded by enzymes to methional with the release of CO2, Professor Arne Skerra from the Department of Biological Chemistry at the Technical University of Munich (TUM), tried to reverse this process. This is because every chemical reaction is in principle reversible, while often only with the extensive use of energy and pressure. Skerra participated in the call for proposals with this idea, and Evonik awarded the concept and supported the project.

Production of Biocatalysts

Supported by postdoctoral researcher Lukas Eisoldt, Skerra began to determine the parameters for the manufacturing process and for producing the necessary biocatalysts (enzymes). The scientists conducted initial experiments and determined the CO2 pressure which would be needed to produce methionine from methional in a biocatalytic process. Surprisingly, an unexpectedly high yield resulted even at a relatively low pressure — approximately corresponding to the one in a car tire of approximately two bars. Based upon the achievements after just one year, Evonik extended the funding, and now the team, reinforced by the Ph.D. student Julia Martin, investigated the biochemical background of the reaction and optimized the enzymes involved using protein engineering.

Adisseo to Build New Liquid Methionine Plant

China: World-Class Plant

Adisseo to Build New Liquid Methionine Plant

01/23/2018 - Adisseo announced the construction of a second liquid methionine plant in Nanjing. It will be the company’s third global liquid methionine platform after the first two world-class plants in Burgos, Spain and in Nanjing, China. read...

More Efficient than Photosynthesis

After several years of work, not only was it possible to improve the reaction on a laboratory scale to a yield of 40 %, but also to elucidate the theoretical background of the biochemical processes. Arne Skerra says that compared to the complex photosynthesis, in which nature also biocatalytically incorporates CO2 into biomolecules as a building block, their process was highly elegant and simple. Photosynthesis used 14 enzymes and had a yield of only 20 %, while the new method required just two enzymes, he claims.

In the future, the basic principle of this novel biocatalytic reaction can serve as a model for the industrial production of other valuable amino acids or precursors for pharmaceuticals. Meanwhile, Professor Skerra’s team will refine the process, which has been patented, using protein engineering so that it will become suitable for large-scale application.

This could be the first time that there is a biotechnological manufacturing process using gaseous CO2 as an immediate chemical precursor. Up to now, attempts to recycle the greenhouse gas, which is a major contributor to climate change, have failed due to the extremely high energy required to do so.

Major Plant Engineering GROAB is a project database for international major plant engineering and construction. You can find more than 5500 projects within 13 categories. Learn more about GROAB and test the database.

Comments are being loaded ....

Leave a comment
  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45430914 / Business & Economics)