Search

Japan: Para-Xylene Consortium to Develop CO2 Utilisation Technologies for Chemical Sector

Editor: Ahlam Rais

Japan’s New Energy and Industrial Technology Development Organisation (Nedo) has selected a consortium for developing the world’s most advanced technology for industrial para-xylene production from CO2. The Group has been selected as contractors for this project.

Related Company

The consortium will aim to improve the innovative catalyst for the production of para-xylene from CO2, and develop a way to mass-produce the catalyst.
The consortium will aim to improve the innovative catalyst for the production of para-xylene from CO2, and develop a way to mass-produce the catalyst.
(Source: Chiyoda Corporation)

Japan – The University of Toyama, Chiyoda Corporation, Nippon Steel Engineering Co., Nippon Steel Corporation, Highchem Company, and Mitsubishi Corporation have recently announced that the Group has jointly applied for and been selected by the New Energy and Industrial Technology Development Organisation (Nedo) for the ‘Development of technologies for carbon recycling and next-generation thermal power generation / Development of technologies for CO2 reduction and utilisation / Development of technologies for CO2 utilisation for Chemicals’.

In order to cope with global climate change, it is necessary to address the issue of CO2 emissions from factories, power plants, and various emission sources while pursuing all possible technological options including carbon recycling technologies. The ‘Roadmap for Carbon Recycling Technologies’ formulated by the Ministry of Economy, Trade and Industry (Meti) in June 2019 sets forth guidelines for utilisation of carbon recycling technologies for separating and collecting CO2 as resources and reusing it in the form of diverse carbon compounds for chemical materials or fuels.

The consortium will aim to improve the innovative catalyst for the production of para-xylene from CO2, and develop a way to mass-produce the catalyst.
The consortium will aim to improve the innovative catalyst for the production of para-xylene from CO2, and develop a way to mass-produce the catalyst.
(Source: Chiyoda Corporation)

Against this backdrop, Nedo has launched a development project for the world’s most advanced technology for industrial para-xylene production from CO2 to substitute existing fossil fuel-derived chemicals, and the Group has been selected as contractors for this commissioned project. Para-xylene is a particularly important basic compound in the production of PTA which is a feedstock material for polyesters such as polyester fibers and plastic bottles. Due to its composition it can be produced with a relatively small amount of hydrogen while fixing a large amount of CO2 as compared to other compounds from carbon recycling. This is a theme with great potential from both economic and environmental perspectives.

Specialist Book „Heat Transfer Technique“The comprehensive standard work „Heat Transfer Technique“ offers not only a detailed and well-founded presentation of the basics of heat transfer technique, but also shows the latest state of the art and the latest regulations in the use of organic fluids. Thematically, the book is rounded off with an overview of property data of organic heat transfer fluids as well as many use cases from practical experience.

The global demand for para-xylene is approximately 49 million tonnes per year. Assuming that the feedstock for para-xylene of the current demand level is entirely converted from fossil fuels to CO2, theoretically 160 million tonnes of CO2 could be fixed in the para-xylene per year. In this project, the Group will improve the innovative catalyst for the production of para-xylene from CO2, develop a way to mass-produce the catalyst, and develop the process while studying its feasibility including its overall economic efficiency and CO2 reduction effect in order to pave the way to the demonstration stage.

(ID:46712940)