German China India

Pilot Plant

ThyssenKrupp to Produce Baking Powder from Process Gases

| Editor: Manja Wühr

Coke plant manager Peter Liszio (right) and Holger Thielert from ThyssenKrupp Industrial Solutions together initiated the joint project. “What could be better than converting gas that is generated anyway into a new, saleable product,” says Thielert.
Coke plant manager Peter Liszio (right) and Holger Thielert from ThyssenKrupp Industrial Solutions together initiated the joint project. “What could be better than converting gas that is generated anyway into a new, saleable product,” says Thielert. (Picture: Thyssen Krupp)

With its pilot plant in Duisburg/Germany ThyssenKrupp builds a bridge between coke plants and Christmas baking. Because the new plant uses a newly developed process, that converts process gases into the baking powder ammonium bicarbonate.

Essen/Germany – The Schwelgern coke plant (KBS), plant engineering company ThyssenKrupp Industrial Solutions and Berlin Technical University (TU Berlin) have jointly developed a new process, for eco-friendly conversion of process gases. A pilot plant installed on the works site of ThyssenKrupp Steel Europe in Duisburg produces a substance – ammonium bicarbonate – that can actually be used as baking powder. But the idea behind the project is not to enter the food industry; the main aim of the pilot plant is to convert process gases generated during the production of coke into marketable materials such as fertilizers and chemical propellants.

“There are coke plants all over the world. With this newly developed process we want to give operators the chance to put their process gases to good use and increase the productivity of their plants,” explains Dr. Holger Thielert, Head of Gas Treatment Plant Department at ThyssenKrupp Industrial Solutions: “For this we have developed and patented a process that converts coke oven gases into valuable materials in an eco-friendly way. We can market this process worldwide and also retrofit it in existing plants.”

On the way to industrial scale use

The new process starts with the production of coke, alongside iron ore the most important charge material for producing pig iron in the blast furnace. “For this, coal is ‘baked’ at high temperatures in the coke plant. The hot gases generated by this process contain a number of substances. The pilot plant uses a complex process to scrub the coke oven gas. Adding carbon dioxide produces ammonium bicarbonate,” says Dr. Thielert. The end products can be put to a range of uses: as nitrogen fertilizers, as propellants and foaming agents for plastics or porous ceramics, and also in the food industry.

Following successful tests in the laboratory, two researchers from TU Berlin were tasked with building the pilot plant in Duisburg. “The key tests can only be carried out under real conditions,” explains Sebastian Riethof, a scientist from TU Berlin. As part of ThyssenKrupp Steel Europe’s integrated iron and steel mill in Duisburg, the Schwelgern coke plant offers ideal conditions for the test phase. “If everything goes to plan here at the coke plant, the new process can also be used on an industrial scale.” Initial results have been promising: “We are able to utilize 95 percent of the ammonia contained in the coke oven gas. Every hour the process produces 15 kilograms of solid materials from 15 cubic meters of coke oven gas and two cubic meters of carbon dioxide,” says Riethof. With this level of efficiency, the chemical products can be manufactured at competitive costs.

Pilot plant reduces CO2 emissions

If the tests continue successfully, this would be a real breakthrough in productivity and resource efficiency – also for the Schwelgern coke plant: “Here in Duisburg, almost all process gases are already being recycled efficiently,” says KBS Managing Director Peter Liszio. “If we can now manage on a long-term basis not only to produce marketable products from the coke oven gases for other sectors but also to reduce the CO2 emissions of the mill, that would be real value added with great environmental benefits.” Continued positive progress could see this idea and plant type being used worldwide in the future.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Contact us via: support.vogel.de/ (ID: 43725005 / Oil & Gas)