Controlled Fluid Transfer

Optimizing Unit Operations in Bio–, Pharmaceutical and Continuous Process Manufacturing

Page: 2/3

Related Companies

Additionally, the necessary contact between a lobe pump’s internal parts can lead to wear and the generation of particles that can result in product contamination. Solid particulates, such as undissolved salt crystals, can cause severe damage to the lobes, resulting in damage to the entire manufacturing batch. Lobe pumps will ultimately cost more to operate because of the increase in power required to overcome the pump’s slippage.

When Pumps Become a Danger for Sensitive Products

The main shortcoming of peristaltic pumps is also the most obvious: Their method of operation will undoubtedly produce pulsation, and, as noted, pulsation is always bad in biopharmaceutical manufacturing. Peristaltic pumps also have limited flow and pressure-handling abilities. For example, they cannot reliably produce the higher discharge pressures (such as 4 bar, or 58 psi) that are required in some fluid-handling applications.

Gallery with 6 images

They are also known to release some small quantity of hose material — in a process known as “spalling” — into the pumped product, which can compromise its purity. If the spalled hose material makes its way to the filter, it can foul the filter, making its operation not as efficient as it needs to be, which will also lead to contamination. Also, inconsistency of flow rate will result due to mechanical deformation of the hose during the pumping process.

In the end, the shortcomings of lobe and peristaltic pumps come down to two main things:

  • If there is shear, which is common in lobe pumps, you will damage the pumped material.
  • If there is pulsation, an operational certainty with peristaltic pumps, you won’t have even flow, and without even flow, you won’t have accurate flow.

The Solution: Quaternary Diaphragm Pump

An effective solution to the operational shortcomings of lobe and peristaltic pumps can be the quaternary diaphragm pump. The operating principle of this special type of pump most closely resembles the operation of the human heart because the four-piston diaphragm technology enables a gentle pumping action through soft “heartbeats.” This action produces four overlapping pumping strokes of the pistons that efficiently reduce pulsation since each stroke of the four diaphragms is generated by an eccentric shaft that is connected to an electric motor.

The quaternary diaphragm pump’s method of operation allows it to gently, safely and securely convey low-viscosity aqueous solutions and biopharmaceutical materials that are highly sensitive to shear forces and pulsation while being pumped. Since the four-piston design of the pump does not require any mechanical seals or wetted rotating parts, total product containment is ensured without any abrasion or particulate generation.