New Production Process for Synthesis Gas Official Opening of Linde Pilot Reformer in Germany

Editor: Dr. Jörg Kempf

Linde officially has opened its new Pilot Reformer research facility at Pullach near Munich, Linde’s largest location worldwide. The reformer will be used to refine steam reforming technology for the production of synthesis gas — a mixture consisting of hydrogen and carbon monoxide. The carbon feedstock for synthesis gas can be in the form of natural gas, liquid petroleum gas, naphtha or even carbon dioxide.

Related Vendors

Linde has invested approximately € 5 million in total to expand Pullach's research and development capacity.
Linde has invested approximately € 5 million in total to expand Pullach's research and development capacity.
(Picture: Linde)

Munich/Germany – “Inventiveness and innovation are ingrained in Linde’s DNA. The official opening of the pilot reformer provides further proof of our customer-centric approach to development and sends a strong signal confirming Germany's role as an innovation hub,” commented Dr Wolfgang Büchele, Chief Executive Officer of Linde.

“Linde intends to use this pilot facility to test and optimise all kinds of approaches to reforming. The insights we gain will help us further improve reforming processes and concepts for our customers,” adds Dr Christian Bruch, Member of the Executive Board of Linde and responsible for Technology and Innovation as well as the Engineering Division.

Tests in the pilot reformer are currently focused on the dry reforming. This innovative process was developed by Linde in cooperation with its partners BASF and hte (responsible for catalyst development), Karlsruhe Institute of Technology / KIT (responsible for simulations) and Dechema (supplier of materials). The pilot project has been awarded funding by the German Ministry for Economic Affairs and Energy (BMWi) of just under one € 1 million.

The production of synthesis gas (a mixture of H2 and CO) through dry reforming of natural gas means that carbon dioxide (CO2) can be used on an industrial scale as an economical feedstock. The process is also significantly more energy efficient than the conventional method of reforming. The synthesis gas can be used to produce valuable downstream products such as base chemicals or fuels. One such example is dimethyl ether (DME). The DME produced through dry reforming offers an improved energy balance and lower CO2 emissions.

The dry reforming process also offers cost efficiencies relative to partial oxidation — the conventional method used up to now to produce CO-rich synthesis gases. These would be of particular interest to small and medium-sized plants.

If the dry reforming pilot proves successful, there are plans to commercialise the process when the funded project comes to an end in 2017 and build a reference plant for a Linde customer.

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy.

Unfold for details of your consent