Different Options for Storage Tanks How To: Heating and Cooling with Storage Tanks

| Author / Editor: Walter Wagner / Nadine Oesterwind

The prefer redranges of application of the heat transfer fluids technology are given by the different organic heat transfer fluids. The technical operation specialist book reference 'Heat Transfer Technique with Organic Fluids' describes plants that primarily use organic heat transfer fluids. In this part of our PROCESS-Series we descripe how to construct Installations wherein production machines (e.g.presses) are heated and cooled with heat transfer oils.

Related Companies

Heating-Cooling-Chilling Unit for pharmaceutical production.
Heating-Cooling-Chilling Unit for pharmaceutical production.
(Source: Heat 11 / Heat Transfer Technique / Vogel Communications Group)

Installations wherein production machines (e.g. presses) are heated and cooled with heat transfer oils can be constructed in different ways. The basic principle is that with all of these installations (hereafter referred to as the press) heat needs to be added to the consumer as well as removed during cooling. Therefore, a heater is required for heating the press and a cooler where the energy is removed again.

Simple Design of Heater/Cooler (I)

The simplest way to solve the problem is to merely provide a heater and a cooler. During heating, the thermal oil initially flows through the heater; there, it is heated and then flows into the press, where it dissipates heat, and then back to the heater. This heating is applied as long as required until the relevant temperature is reached in the press. For the cooling process, the heater is switched off and the thermal oil is no longer routed through the heater, but instead through a cooler (water- or aircooler), where it is cooled. These installations are simple in design and are still built to day for smaller thermal power requirements. The disadvantage is that relatively large heater and cooler powers are required, because the heating and cooling is often only required within short periods.

Specialist Book „Heat Transfer Technique“

The comprehensive standard work „Heat Transfer Technique“ offers not only a detailed and well-founded presentation of the basics of heat transfer technique, but also shows the latest state of the art and the latest regulations in the use of organic fluids. Thematically, the book is rounded off with an overview of property data of organic heat transfer fluids as well as many use cases from practical experience.

Design of Heater with Hot Oil Storage/Cooler (II)

The disadvantage of increased heater power mentioned under (I) arises because of the need to switch off the heater during the cooling process. If it were possible to allow the heater to also continue to operate during the cooling process, it would be possible to have a smaller heater for a specific installation power (option for heat storage -accumulation).This leads to the possibility of using a hot oil store so that the heater operates continuously. During the cooling process, the heater heats up the thermal oil in an accumulator. This installation has a hot oil store but no cold oil store, because costs per installed kWh for the heater circuit are considerably higher than costs per installed kWh for the cooler circuit. Thus, by introducing the hot oil store, installations (II) become more cost-effective than installation (I) which functions without a store.

Design with Heater/Hot Oil Storage – Cooler/Cold Oil Store (III)

The logical next step in the development of these plants is the application of both hot and cold oil storage. The cold oil store becomes particularly useful with the application of air coolers, because air coolers have higher investment costs than water coolers, which are relatively inexpensive. In addition, the overall economics of the process improve slightly if two stores are used. This is because, by using a suitable arrangement of the valves, part of the heating or cooling energy can be recovered, which is not possible with the level (I) installation. (There,when switching over from heating to cooling, the hot fluid, for example 200 °C, must be admitted to the cooler, thereby expunging the total energy. If stores are used, part of this energy can be recovered.)

Design of a Heater/Cooler with Hot Oil/Cold Oil and Compensation Tank (IV)

Efforts have been made to further improve the heat recovery during heating and cooling, particularly for large installations. This has led to the application of a third store as a compensation tank.


* Dipl.-Ing. Walter Wagner: Born in 1941; following an apprenticeship as a technical draughtsman, he completed his mechanical engineering studies and was a plant design engineer in the atomic reactor industry during the period of 1964 to 1968; as of 1968 he was the technical director in plant construction, boiler construction and heat transfer technology. During the period of 1974 to 1997 Walter Wagner worked as a lecturer at the Technical College of Heilbronn, from 1982 to 1984 in addition at the Technical College of Mannheim, and from 1987 to 1989 at the Mosbach Vocational Academy. In the period of 1988 to 1995 he was the managing director of Hoch-Temperatur-Technik Vertriebsbüro Süd GmbH. Since 1992 he has been head of consulting and seminars for plant engineering: WTS Wagner-Technik-Service. In addition, Walter Wagner was also chairman of various DIN standards committees and an authorized specialist in heat transfer fluid technology, thermal plant construction and piping engineering. Walter Wagner is the author of the following specialist books (currently only available in German language):

* Festigkeitsberechnungen im Apparate- und Rohrleitungsbau

* Kreiselpumpen und Kreiselpumpenanlagen

* Lufttechnische Anlagen

* Planung im Anlagenbau

* Regel- und Sicherheitsarmaturen

* Rohrleitungstechnik

* Strömung und Druckverlust

* Wärmeaustauscher

* Wärmeträgertechnik

* Wärmeübertragung

* Wasser und Wasserdampf im Anlagenbau

* Dietzel/Wagner: Technische Wärmelehre

* Hemming/Wagner: Verfahrenstechnik

* Further information: