Related Vendors
Mixer Agitation Rate
When sizing a portable mixer it is important to know the degree of agitation required for the application. Mild agitation is normally 1/2 to 1 tank turnover per minute, medium agitation is 1-1/2 to 2 tank turns per minute, vigorous agitation is 2-1/2 to 3 turns per minute and violent mixing has tank-turnover rates of more than 3 turns per minute. The prop’s pumping rate is available from mixer manufacturers for each mixer model type and size at the various rpms at which they will operate, and is normally measured in the gallon-per-minute (gpm) pumping rate of water. Sizing and selecting a mixer can be easily done with this information. For example, a 100-gallon tank of a water-like chemical requires vigorous agitation, or 2-1/2 turnovers. Knowing that a 4-inch square pitch prop at 1,750 rpm delivers a pumping rate of 250 gpm, a portable mixer could be selected. Keep in mind, however, that as liquid viscosity increases the pumping rate decreases.
Mixer Positioning
The goal of any portable mixer is to either blend, dissolve or disperse, and to do this in the most efficient manner. With that in mind, the position of the shaft and prop in the mixing container is a critical concern.
In most mixing applications involving small cylindrical tanks of 1,000 gallons or less, the mixer is clamped to the side of the container. Effective mixing patterns will be achieved if the mixer is angled 10 to 15 degrees away from the vertical, either off-center or on-center. Angling the mixer 15 to 20 degrees off of the tank’s centerline is preferred when good material turnover is required, as when mixing a slurry. On-center angling is better for gentler mixing and creates a vortex. Vortexing occurs when the contents of the tank swirl around the walls of the tank without much top-to-bottom turnover; this creates a less-efficient mixing operation and the possibility of uneven mixing or blending.
Cylindrical tanks with capacities of more than 1,000 gallons may require that the mixer be mounted directly in the center of the tank with the shaft in a vertical orientation. In this configuration, it is recommended that the operator put baffles on the walls of the tank in order to prevent the contents of the tank from turning in the direction of the mix, or creating an inefficient vortex. When this occurs, the mixing action in the tank will be poor.
It is suggested that four baffles be used in this situation with them placed 90 degrees apart on the walls of the container and sized approximately 1/12th of the tank’s diameter. The baffle should not fully extend to the bottom of the tank and a noticeable gap, usually 1/2 to 1-inch in size, should be left between the baffles and the tank walls if solids are present or for viscosities over 500 cPs to prevent a buildup where the baffle connects to the tank wall. If baffles are required in a square or rectangular tank, they should be placed at the midpoint of each of the four walls, with the same sizing and positioning parameters for baffles that are placed in circular tanks acknowledged.
Be advised, though, that the presence of vortexing during the mixing or blending process is not always detrimental. For example, creation of a vortex is desirable when solids or powders are added to the top of the batch, or liquids need to be drawn rapidly into the batch. The level of vortexing also becomes less severe with fluids that have higher viscosities.
Conclusion: Portable mixers can play a significant role in optimizing the effectiveness of the entire production operation. Knowing the the right way to select and operate mixers, as well as the handling characteristics of the fluid to be mixed or blended, will play a major role in selecting the technology that is perfectly suited for the specific operation.
* The Author is Director of Business Development for Neptune Chemical Pump Company and PSG, Grand Terrace/USA.
(ID:45446026)